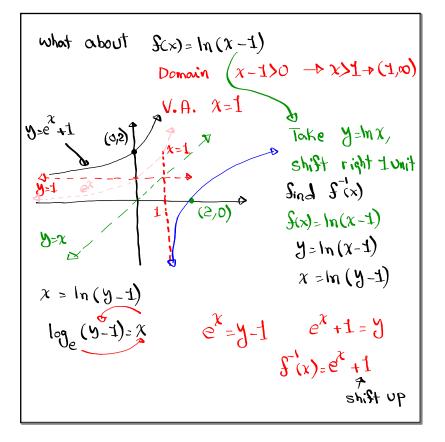
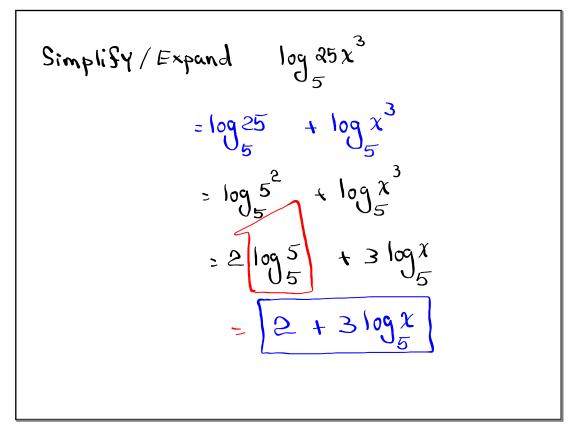


Feb 19-8:47 AM

Class QZ 2
Find the equation of the tangent line to the
graph
$$S(x) = ln(x-1)$$
 at $x=2$. Final answer in
Slope Int. Forme
Hint: $\frac{1}{dx} [lnu] = \frac{1}{n} \frac{du}{dx}$
 $S(2) = ln(2-1)$
 $f(2, S(2)) = (2, 0)$
 $m_{=} f'(2) = \frac{1}{2-1} = 1$
 $g(x) = ln(x - x_{1})$
 $g(x) = \frac{1}{x-1} \cdot 1$
 $g(x) = lnx$ is the inverse of $g(x) = e^{x}$
 $f(x) = lnx$ is the inverse of $g(x) = e^{x}$
 $g(x) = lnx$ is the inverse of $g(x) = e^{x}$
 $f(x) = lnx$ is the inverse of $g(x) = e^{x}$
 $g(x) = lnx$ is the inverse of $g(x) = e^{x}$
 $g(x) = lnx$ is the inverse of $g(x) = e^{x}$
 $g(x) = lnx$ is the inverse of $g(x) = e^{x}$
 $g(x) = lnx$ $g(x) = lnx$ $g(x) = 0$
 $g(x) = lnx$ $g(x) = lnx$ $g(x) = 0$
 $g(x) = lnx$ $g(x) = lnx$ $g(x) = 0$
 $g(x) = lnx$ $g(x) = lnx$ $g(x) = 0$
 $g(x) = lnx$ $g(x) = lnx$ $g(x) = 0$
 $g(x) = lnx$ $g(x) = lnx$



Some Properties of log:
1)
$$\log_{B}^{\chi}$$
, $\chi > 0$, $b > 0$, $b \neq 1$
a) $b = \pm 0$ \rightarrow (common log
 $b = e$ \rightarrow Natural log
3) $\log_{B}^{1} = 0$, $\log_{B}^{0} = 1$
4) $\log_{B}^{0} mN = \log_{B}^{0} m + \log_{B}^{0} N$
5) $\log_{B}^{0} \frac{m}{N} = \log_{B}^{0} m - \log_{B}^{0} N$
6) $\log_{B}^{0} m^{2} = P \log_{B}^{0} m$
7) change of base $\log_{N}^{0} = \frac{\log_{B}^{0}}{\log_{B}^{0}}$
8) $b_{D}^{\log_{B}^{0} \chi} = \chi$



Write as a single log

$$4 + \frac{1}{2} \log^{2} - \frac{1}{3} \log^{5} 2$$

 $= 4 \cdot 1 + \log 2^{1/2} - \log 2^{1/3}$
 $= 4 \log^{2} 2 + \log 32 - \log^{3} 5$
 $= \log^{2} 2 + \log 32 - \log^{3} 5$
 $= \log^{2} 2 + \log 32 - \log^{3} 5$
 $= \log^{2} 2 + \log 32 - \log^{3} 5$

Use Your Calc, round to 3-decimal places
1)
$$\log_{10}^{2020} \approx 3.305$$
 verify
10 $10^{3,305} \approx 2020$
2) $\ln_{2024} \approx 7.613$ verify
 $\log_{2}^{2024} \approx 7.613$ $e^{7.613} \approx 2024$
 $2.718^{7.613} \approx 2024$
3) $\log_{3}^{5} = \frac{2}{3}$ $3^{2} = 81$ -5 4
Using change of base formula
 $\log_{3}^{51} = \frac{\ln_{81}}{\ln_{3}} = \frac{\log_{81}}{\log_{3}^{3}} = 4$

Find
$$\frac{dy}{dx}$$
 is $y = 4^{\chi}$
Take In of both sides
In $y = hz + 4^{\chi}$
In $y = \chi \ln 4$
Take derivative of both sides
 $\frac{d}{dx} [\ln y] = \frac{d}{dx} [\chi \ln 4]$
 $\frac{1}{y} \frac{dy}{dx} = \ln 4 \frac{dx}{dx}$
 $\frac{1}{y} \frac{dy}{dx} = \ln 4 \frac{dx}{dx}$
 $\frac{1}{y} \frac{dy}{dx} = \ln 4 \frac{dy}{dx}$
 $\frac{1}{y} \frac{dy}{dx} = \ln 4 \frac{dy}{dx}$

June 12, 2024

find slope of the normal line to the
graph of
$$f(x) = 5^{x-1}$$
 at $x = 2$.
 $y = 5^{x-1}$
 $\ln y = \ln 5^{x-1}$
 $\ln y = (x-1) \cdot \ln 5$
 $\frac{1}{y} \frac{dy}{dx} = \ln 5 \cdot 1$
 $f(x) = \ln 5 \cdot 5^{x-1}$
 $f(x) = \ln 5 \cdot 5^{x-1}$
 $\int f(2) = \ln 5 \cdot 5^{x-1}$

Sind
$$\frac{dw}{dx}$$
 if $y = (x-2)(x+4)^{5}$
 $y' = 3(x-2)\cdot 1\cdot (x+4)^{5} + (x-2)^{3}\cdot 5(x+4)\cdot 1$
 $y' = 3(x-2)^{2}\cdot (x+4)^{5} + 5(x-2)(x+4)^{4}$
 $y' = (x-2)^{2}(x+4)^{4} \int 3(x+4) + 5(x-2) \int$
 $y' = (x-2)^{2}(x+4)^{4} (8x+2)$
 $y' = 2(x-2)^{2}(x+4)(4x+1)$

5

$$\begin{aligned} y &= (x-2)^{3}(x+4)^{5} \\ lmy &= lm \left[(x-2)^{3}(x+4)^{5} \right] \\ lmy &= 3ln(x-2) + 5ln(x+4) \\ \frac{1}{3} \frac{dy}{dx} &= \frac{3}{x-2} + \frac{5}{x+4} \\ \frac{dy}{dx} &= (x-2)^{3}(x+4)^{5} \left[\frac{3}{x-2} + \frac{5}{x+4} \right] \\ &= 3(x-2)^{2}(x+4)^{5} + 5(x-2)^{3}(x+4)^{4} \\ &= (x-2)^{2}(x+4)^{4} \left[3(x+4) + 5(x-2) \right] \\ &= 5ee \ Last \ slide \end{aligned}$$

Sind
$$\frac{dv}{dx}$$
 is $y_{z} \frac{\sqrt{x^{2}-1}}{\sqrt[3]{x^{4}+1}}$
In $y = \ln \sqrt{x^{2}-1} - \ln \sqrt[3]{x^{4}+1}$
In $y = \frac{1}{2} \ln(x^{2}-1) - \frac{1}{3} \ln(x^{4}+1)$
 $\frac{1}{3} y' = \frac{1}{2} \cdot \frac{\cancel{x}x}{x^{2}-1} - \frac{1}{3} \cdot \frac{\cancel{4x^{3}}}{\cancel{x^{4}+1}}$
 $y' = \frac{\sqrt{x^{2}-1}}{\sqrt[3]{x^{4}+1}} \left[\frac{\cancel{x}}{\cancel{x^{2}-1}} - \frac{\cancel{4x^{3}}}{\cancel{3(x^{4}+1)}} \right]$

Evaluate
$$\int \tan x \, dx$$
 for $O < x < \frac{\pi}{2}$
Recall $\tan x = \frac{\sin x}{\cos x}$ $\cos x > 0$
 $\int \tan x \, dx = \frac{\sin x}{\cos x} \, dx$ $\int \tan x \, dx = \frac{\sin x}{\cos x} \, dx$
 $\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$ $\int \frac{du}{du} = \frac{\sin x \, dx}{-du}$
 $\int \frac{-1}{u} \, du = -1 \int \frac{1}{u} \, du$
 $= \int \frac{-1}{u} \, du = -1 \int \frac{1}{u} \, du$
 $= \ln \frac{1}{u} + C$
 $= \ln \frac{1}{u} + C$
 $= \ln \frac{1}{u} + C$
 $= \ln (\sec x) + C$

derive a formula for
$$\frac{1}{4x} \begin{bmatrix} \log x \\ \log x \end{bmatrix}$$

We know $\frac{1}{4x} \begin{bmatrix} \ln x \\ x \end{bmatrix} = \frac{1}{x}$, we also know
 $\log M = \frac{\ln M}{\ln N}$ change of base
formula
 $\frac{1}{4x} \begin{bmatrix} \log x \\ \log x \end{bmatrix} = \frac{1}{4x} \begin{bmatrix} \frac{\ln x}{\ln a} \end{bmatrix} = \frac{1}{\ln a} \frac{1}{4x} \begin{bmatrix} \ln x \\ \ln x \end{bmatrix}$
 $= \frac{1}{\ln a} \cdot \frac{1}{x}$
Derive a formula for $\frac{1}{4x} \begin{bmatrix} a^{x} \\ a^{x} \end{bmatrix}$
 $\ln y = x \ln a$
 $\frac{1}{y} \frac{dy}{dx} = \ln a$
 $\frac{dy}{dx} = \ln a \cdot y = \ln a \cdot a^{x}$

Sind
$$\frac{dy}{dx}$$
 if $y = x^{\chi}$
In $y = \ln x^{\chi}$
In $y = x \ln \chi$
 $\frac{dy}{dx} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $\frac{dy}{dx} = y \left[\ln \chi + 1 \right]$
 $\frac{dy}{dx} = \chi^{\chi} \left[\ln \chi + 1 \right]$
 $\frac{dy}{dx} = \chi^{\chi} \left[\ln \chi + 1 \right]$

Sind eqn of the tangent line to the
graph of
$$y = x^{\sqrt{x}}$$
 at $x=1$.
 $y = x^{\sqrt{x}}$
 $\ln y = \sqrt{x} \ln x$
 $\int \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \ln x + \frac{\sqrt{x}}{x}$
 $\int \frac{dy}{dx} = \frac{1}{2\sqrt{x}} \ln x + \frac{\sqrt{x}}{x}$

Sind eqn of the normal line to the graph
of
$$y = \int x^{\chi}$$
 at $x=1$.
 $y = \int x^{\chi}$
 $y = \int x^{\chi}$
 $y = \int x^{\chi}$
 $y^{2} = \chi^{\chi}$
 $y^{2} = \chi^{\chi}$
 $y^{2} = \chi^{\chi}$
 $y^{2} = \ln x^{\chi}$
 $y = -\frac{1}{d^{10}}$
 $y = \ln x^{\chi}$
 $2 \cdot \frac{1}{y} \cdot \frac{dy}{dx} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{y} \cdot \frac{dy}{dx} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{y} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{y} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{y} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{y} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{y} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{y} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \ln \chi + \chi \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{dy}{d\chi} = 1 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{1}{\chi} = \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} = \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} = \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi} = \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi}$
 $2 \cdot \frac{1}{\chi}$
 2

$$\begin{aligned} \text{find } y' \text{ for } y &= \frac{e^{x} \cos^{2} x}{x^{2} + x + 1} \\ \text{hg} &= \text{hn} \quad \frac{e^{x} \cos^{2} x}{x^{2} + x + 1} \\ \text{lng} &= \text{ln} \quad e^{-x} \cos^{2} x \quad -\ln(x^{2} + x + 1) \\ \text{lng} &= \ln e^{x} \quad +\ln \cos^{2} x \quad -\ln(x^{2} + x + 1) \\ \text{lng} &= -x \ln e^{1} \quad + 2\ln \cos x \quad -\ln(x^{2} + x + 1) \\ \frac{1}{y} \cdot y' &= -1 \quad + 2 \cdot \frac{-\sin y}{\cos x} \quad - \frac{2x + 1}{x^{2} + x + 1} \\ y' &= y \left[-1 \quad -2 \tan x \quad - \frac{2x + 1}{x^{2} + x + 1} \right] \\ y' &= \frac{-e^{-x} \cos^{2} x}{x^{2} + x + 1} \left[1 \quad + 2 \tan x \quad + \frac{2x + 1}{x^{2} + x + 1} \right] \end{aligned}$$

Evaluate

$$\int \frac{\sin^2 x}{1 + \cos^2 x} dx$$

$$\int \frac{-1}{u} du$$

$$= -\int \frac{1}{u} du = -\ln u + C$$

$$\int \frac{-1}{u} du = -\ln u + C$$

$$\int \frac{1}{u} du = -\ln u + C$$

Sind the area below
$$S(x) = x \cdot 2^{x^2}$$
, above
 $x - ax^3 \cdot 5$, from $x = 0$ to $x = 1$.
 $S(0) = 0 \cdot 2^{0^2} = 0$
 $S(x) = 1 \cdot 2^{1^2} = 2$
 $S(x) \ge 0$ on $[0, 1]$
 $A = \int_{-\infty}^{14} \frac{x^2}{2} \frac{1}{2x}$
 $= \int_{-\infty}^{14} \frac{x^2}{2} \frac{1}{2x}$
 $= \int_{-\infty}^{14} \frac{1}{2} \frac{x^2}{2} \frac{1}{2x}$
 $= \int_{-\infty}^{1} \frac{2^n}{2} \frac{1}{2^n} \frac{1}{2$

Topic Srom Cal. I
IS
$$f(x) = \int_{u(x)}^{v(x)} g(t) dt$$
, then
 $g(x) = g(v(x)) \cdot v(x) - g(u(x)) \cdot u(x)$
 $f(x) = \int_{1}^{x^{2}} \sqrt{sint + lost} dt$
 $f'(x) = \sqrt{sinx^{2} + losx^{2}} \cdot 2x - \sqrt{sin1 + los1} \cdot 0$
 $f'(x) = 2x \sqrt{sinx^{2} + losx^{2}}$

$$f(x) = \int_{x^{3}}^{x^{5}} \frac{v(x)}{y(t)} dt , \text{ find } f'(x)$$

$$g(t)$$

$$f'(x) = \sin\left(\frac{5}{x^{5}} \cdot 5x^{4} - \sin\left(\frac{5}{x^{3}} \cdot 3x^{2}\right)\right)$$

$$f'(x) = 5x^{4} \sin^{3} 5x - 3x^{2} \sin^{5} 7x$$

Fave of the cont. Sunction
$$f(x)$$
 on $[a,b]$

$$f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$
Find fore for $f(x) = \frac{1}{x}$ on $[1,2]$.
$$f_{ave} = \frac{1}{2-1} \int_{1}^{2} \frac{1}{x} dx$$

$$= \ln x \int_{1}^{2} = \ln 2$$

Class QZ 3
Evaluate
$$\int \frac{e^{\chi}}{e^{\chi} + 1} d\chi$$
 $u = e^{\chi} + 1$
 $du = e^{\chi} d\chi$
 $= \int \frac{1}{N} du = \ln |u| + C$
 $= \ln |e^{\chi} + 1| + C$
Since $e^{\chi} + 1 > 0$, No Abs. Value needed.
 $= \ln (e^{\chi} + 1) + C$